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• Optimizing over a trained neural network
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Non-Convex Optimization

• Many problems in practice involve non-convex loss functions.

• Loss functions that arise in real-world applications can be as complex as
the example in Figure 1.

Figure: Rastrigin Function in 2D
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Non-Convex Optimization

• Various algorithms exist for non-convex optimization.

• For example, gradient descent with Hessian steps, the cubic regularization
method, and perturbed gradient descent.

• These algorithms are designed to find second-order stationary points or
local minima under appropriate assumptions on the loss function.

• There indeed exist many applications where it is difficult to analyze the
gradient and Hessian of the underlying loss function.

4/35



Black-Box Optimization

Application Scenarios

• Engineering Design: Optimizing the design of complex systems and
structures (e.g., aerodynamics of aircraft, structural design of bridges)
where simulations are used to evaluate performance.

• Machine Learning and Hyperparameter Tuning: Tuning
hyperparameters of machine learning models, such as neural networks,
support vector machines, and random forests, to achieve better
performance on training and validation data.

• Robotics: Optimizing control parameters and policies for robotic systems
where the dynamics are complex and non-linear.

• Gaming and AI: Developing and tuning artificial intelligence for games,
including the optimization of strategies and behaviors in complex
environments.

5/35



Black-Box Optimization

Application Scenarios

• Finance and Trading: Developing and optimizing trading algorithms and
strategies, as well as portfolio optimization, where the financial models are
often noisy and non-differentiable.

• Energy Systems: Optimizing the operation and design of energy systems,
such as power grids, renewable energy installations, and energy storage
systems, to improve efficiency and stability.

• Material Science: Discovering new materials with desirable properties
(e.g., strength, conductivity) by optimizing the composition and
processing parameters.

• Healthcare and Medicine: Personalizing treatment plans and drug
formulations by optimizing the dosage and combination of therapies for
individual patients.

• Chemistry and Biochemistry: Optimizing chemical reactions and
biological processes for higher yield, efficiency, and reduced side products
in chemical engineering and biotechnology.
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Black-Box Optimization

• In these application settings, the associated loss function is ofen complex,
non-differentiable, noisy, or not explicitly known.

• As a result, we cannot hope for computing the gradient nor the Hessian of
the underlying loss function.

• Thereore, we need to consider non-convex optimization with bandit
feedback.

• This problem is often referred to as black-box optimization.
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Discretization-Based Search

• Let us consider
min
x∈C

f (x)

where C is the domain and f is the loss function.

• For black-box optimization, we make minimal assumptions on the loss
function f .

• That said, we consider the general setting where the loss function can be
non-convex and non-differentiable.

• On the other hand, in some applications, the underlying loss function is
continuous.

• The example in Figure 1 is indeed continuous, even though its structure is
highly complex.
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Discretization-Based Search

• Motivated by this, we consider the setting where the loss function is
Lipschitz continuous.

• Throughout this section, we assume that f is L-Lipschitz continuous in a
norm ‖ · ‖, i.e.,

|f (x)− f (y)| ≤ L‖x − y‖.
• The goal is to find a near-optimal solution xε for a given ε > 0 such that

f (xε) ≤ min
x∈C

f (x) + ε.

• As the loss function f is Lipschitz continuous, our approach is to find a
point that is close to an optimal solution.
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Discretization-Based Search

• Then, how do we find such a point?

• The most näıve way is to discretize the solution space and search over the
discrete set of points.
• To be more precise, we consider the following two steps.

1 First, discretize the domain C to obtain a finite subset Cε ⊆ C containing
an ε-optimal solution.

2 Next, enumerate all points in Cε.

• Hence, as long as the discretization Cε contains an ε-optimal solution xε,
the search procedure will find one.

• The iteration complexity of this algorithm is the number of points in Cε.

• Therefore, the part of constructing a discretization Cε is crucial.
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Discretization-Based Search

To simplify our presentation, we assume that

• the domain is given by C = [0, 1]d ,

• we use the `∞-norm, i.e., ‖ · ‖ = ‖ · ‖∞, and

• 1/Lε is an integer.

Based on these assumptions, we partition the domain C = [0, 1]d into

(1/Lε)d

boxes by decomposing each coordinate interval [0, 1] into

[0, ε/L], [ε/L, 2ε/L], . . . , [1− ε/L, 1].
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Discretization-Based Search

• Then a box has the form[
(i1 − 1)ε

L
,
i1ε

L

]
×
[

(i2 − 1)ε

L
,
i2ε

L

]
× · · · ×

[
(id − 1)ε

L
,
idε

L

]
=

{
x ∈ Rd :

(ij − 1)ε

L
≤ xj ≤

ijε

L
∀j ∈ [d ]

}
.
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Discretization-Based Search

• For a given box, we take the center point given by((
i1 − 1

2

)
ε

L
,

(
i2 − 1

2

)
ε

L
, . . . ,

(
id − 1

2

)
ε

L

)
.

• Note that there are (1/Lε)d center points from the (1/Lε)d boxes.

• Basically, the set of center points gives rise to a desired discretization Cε.

• The algorithm is to enumerate all center points and return the one
achieving the minimum loss value.
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Discretization-Based Search

• How do we establish the correctness of this approach?

• Note that any two points x , y in a piece satisfies

‖x − y‖∞ ≤ ε/L,

which implies that

|f (x)− f (y)| ≤ L‖x − y‖∞ ≤ ε.

• Let c∗ be the center point of the box containing an optimal solution.

• Then it follows that
f (c∗) ≤ min

x∈C
f (x) + ε.

• Let c̄ be the center point returned by the algorithm.

• By the choice of c̄, we have that

f (c̄) ≤ f (c∗) ≤ min
x∈C

f (x) + ε,

as required.
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Issues with the Discretization-Based Search

• The algorithm is based on a fixed discretization.

• As a result, the algorithm always takes (1/Lε)d steps to finish search over
all points in the discretization.

• Another issue is that we require knowledge of the Lipschitz constant L.

• Furthermore, the most critical issue with the method is that we need the
assumption that the loss function is Lipschitz continuous over the entire
domain.
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Optimistic Optimization

• We cover a framework of Munos [Mun11], referred to as simultaneous
optimistic optimization (SOO).

• The SOO framework works under the following weaker assumption than
the global Lipschitz continuity assumption.

Assumption

There exists some L > 0 such that for any x ∈ C ,

f (x)− f (x∗) ≤ L‖x − x∗‖

where x∗ is an optimal solution to minx∈C f (x).

• Hence, we assume Lipschitz continuity around an optimal solution, which
is essentially a local Lipschitz continuity assumption.
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Optimistic Optimization

• Another favorable aspect of SOO is that it does not need to know the
Lipschitz constant L.

• How is this possible?

• Recall that the previous approach needs to know L because it prepares a
fixed discretization based on the parameter L.

• In contrast, instead of one fixed discretization, the SOO framework starts
with a rough partition of the domain, and it gradually refines it.

• To be more specific, SOO works with the idea of hierarchical partitioning.

• First, the domain C is partitioned into K subsets. Here, one may represent
the K subsets as K children of paraent C .

• Then, we may choose one of the K subsets and partition it into K subsets.
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Optimistic Optimization

Figure: Partitioning of the domain
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Optimistic Optimization

• We may continue partitioning pieces.

• From the second partition of Figure 2, we can choose one of the two large
subsets or one of the three smaller subsets.

• Figure 3 shows a sequence of more refined partitions of the domain C .

Figure: Refined partitions
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Optimistic Optimization

• The hierarchical partitioning structure naturally gives rise to a tree
representation as in Figure 4.

Figure: Tree representation of a partition
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Optimistic Optimization

• Note that hierarchical partitioning can be done without knowledge of the
Lipschitz constant L.

• The main idea behind the SOO framework is to choose subsets that are
expected to contain an optimal solution and refine them gradually.

• As the algorithm from the previous section, SOO takes a center point of
each subset.

• Then the quality of the subset is measured by the loss value of its center
point.
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Optimistic Optimization

• Another important component of SOO is the idea of optimistic search.

• At each iteration, we need to choose which subset to be partitioned.

• The choice is made based on two criteria.

• On one hand, it makes sense to focus on subsets whose center points have
low loss values.

• On the other hand, a large subset is not explored enough yet, so its
unexplored region may contain a good solution.

• This is similar in spirit to the exploration-exploitation tradeoff.
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Optimistic Optimization

• To be more specific, we use notation (h, j) to denote the jth subset at
depth h.

• Here, (0, 0) refers to the original domain C .

• Then we denote by xh,j the center point of (h, j).

• Then the quality of subset (h, j) is measured by f (xh,j).

• Then, the next question is about how to choose a subset that is
unexplored?

• We may select a subset at a high level in the tree representation.
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Optimistic Optimization

Algorithm 1 Simultaneous Optimistic Optimization

Input: the maximum depth function hmax : Z→ Z.
Initialize T1 = {(0, 0)} and t = 1.
while True do

Set vmin =∞.
for h = 0 to min{depth(Tt), hmax(t)} do

Among all leaves (h, j) ∈ Lt of depth h, select

(h, i) ∈ argmin(h,j)∈Lt
f (xh,j)

if f (xh,i ) ≤ vmin then
Partition the subset (h, i) into K subsets (h+ 1, i1), . . . , (h+ 1, iK ).
Add them to Tt .
Evaluate f (xh+1,i1 ), . . . , f (xh+1,iK ).
Set vmin = f (xh,i ).
if t = T then

Return argmax(h,i)∈TT f (xh,i )
end if

end if
end for

end while
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Black-Box Optimization via Supervised Learning

• Black-box optimization framework applies to settings where the objective
function is not known to the decision-maker.

• Basically, we consider
min
x∈C

f (x)

where the decision-maker has access to none of the gradient ∇f (x) and
the Hessian ∇2f (x).

• We find a solution based on bandit feedback which exhibits the value f (x)
of a chosen solution x .

• We learned optimistic optimization methods, which explore the solution
space based on continuity of the objective function.

• The main idea behind the optimistic optimization methods is that we
provide a hierarchical partitioning of the search space.

• Based on the partitioning, we optimistically explore subsets of the search
space.
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Black-Box Optimization via Supervised Learning

• The optimistic optimization algorithms are widely used in practice because
they rely on minimal structural assumptions on the objective function.

• On the other hand, they often fall into inferior performance than
instance-specific methods that are implemented with some knowledge of
the problem environment.

• That is because they do not exploit any underlying structures of the
objective function.

• This motivates the question of how to explore and exploit the
underlying structure of the function.
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Black-Box Optimization via Supervised Learning

• In this lecture, we discuss some supervised learning methods to learn and
approximate the unknown objective function.

• More importantly, based on the learned model and function, we are
interested in finding a good solution that guarantees a small loss value.

• Basically, we are given n data points

(x1, f (x1)), . . . , (xn, f (xn)),

from which we infer the underlying function f .
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Optimizing over a Trained Neural Network

• One of the most practical supervised learning is to use a neural network to
learn the underlying model.

• Based on a data set of n points (x1, y1), . . . , (xn, yn) with yi = f (xi ) for
i ∈ [n], one may train a neural network by considering

min
θ

n∑
i=1

`(fθ(xi ), yi ).

• Here, the trained neural network fθ provides an approximation of the
objective function f .

• Then, we may find a solution that achieves a small f value by considering

min
x∈C

fθ(x).

28/35



Optimizing over a Trained Neural Network

• Feed-forward neural networks with ReLU activations functions are
commonly used for approximating the unknown objective function in
practice [PTA+22].

• We discuss how to find an input solution that optimizes the output value
of a trained feed-forward neural network with ReLU activation.

• In particular, we explain the basic formulation due to Fischetti and Jo
[FJ18] and Serra et al. [STR18].
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Optimizing over a Trained Neural Network

• Let us discuss the case of a neural network with a single hidden layer.

• Let x ∈ Rd be the input, prepared by d input neurons. There are m
neurons in the single hidden layer.

• Let the input of the ith neuron in the hidden layer be given by w>i x + bi .
Then the output of the neuron is

ReLU(w>i x + bi ).

• Let ai denote the weight between the ith neuron in the hidden layer and
the output node.

• Then the output of the neural network is given by

fθ(x) =
n∑

i=1

ai · ReLU(w>i x + bi ).
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Optimizing over a Trained Neural Network

• Then the problem boils down to solving

min
x∈C

n∑
i=1

ai ti

s.t. ti = ReLU(w>i x + bi ), i ∈ [n].

(1)
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Optimizing over a Trained Neural Network

• Recall that

ReLU(x) =

{
x , if x > 0,

0, otherwise.

• Let `i and ui denote the lower and upper bounds of w>i x + bi over C
given by

`i = inf
x∈C

{
w>i x + bi

}
, ui = sup

x∈C

{
w>i x + bi

}
.
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Optimizing over a Trained Neural Network

• Then, we can argue that ti = ReLU(w>i x + bi ) holds if and only if ti
satisfies

ti ≥ 0,

ti ≥ w>i x + bi ,

ti ≤ u>i zi ,

ti ≤ w>i x + bi − `i (1− zi ),

for some zi ∈ {0, 1}.
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Optimizing over a Trained Neural Network

• Therefore, (1) can be formulated as

min
x∈C

n∑
i=1

ai ti

s.t. ti ≥ 0, i ∈ [n]

ti ≥ w>i x + bi , i ∈ [n]

ti ≤ u>i zi , i ∈ [n]

ti ≤ w>i x + bi − `i (1− zi ), i ∈ [n]

zi ∈ {0, 1}, i ∈ [n].

(2)

• The formulation simply extends to the case of multiple hidden layers.
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Optimizing over a Trained Neural Network

• More recently, Anderson et al. [AHM+20] and Tsay et al. [TKTM21]
developed computationally improved formulations for optimizing a trained
feed-forward neural network with ReLU activation.
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