Lecture 11: Black-Box Optimization

Dabeen Lee

Industrial and Systems Engineering, KAIST

2025 Winter Lecture Series on Combinatorial Optimization

January 17, 2025

Outline

® Introduction to black-box optimization
® Discretization-based search
® QOptimistic optimization

® QOptimizing over a trained neural network

Non-Convex Optimization

® Many problems in practice involve non-convex loss functions.

® | oss functions that arise in real-world applications can be as complex as

the example in Figure 1.

AA‘A“A
AA

L

Figure: Rastrigin Function in 2D

Non-Convex Optimization

® Various algorithms exist for non-convex optimization.

® For example, gradient descent with Hessian steps, the cubic regularization
method, and perturbed gradient descent.

® These algorithms are designed to find second-order stationary points or
local minima under appropriate assumptions on the loss function.

® There indeed exist many applications where it is difficult to analyze the
gradient and Hessian of the underlying loss function.

Black-Box Optimization

Application Scenarios

® Engineering Design: Optimizing the design of complex systems and
structures (e.g., aerodynamics of aircraft, structural design of bridges)
where simulations are used to evaluate performance.

® Machine Learning and Hyperparameter Tuning: Tuning
hyperparameters of machine learning models, such as neural networks,
support vector machines, and random forests, to achieve better
performance on training and validation data.

® Robotics: Optimizing control parameters and policies for robotic systems
where the dynamics are complex and non-linear.
® Gaming and Al: Developing and tuning artificial intelligence for games,

including the optimization of strategies and behaviors in complex
environments.

Black-Box Optimization

Application Scenarios

Finance and Trading: Developing and optimizing trading algorithms and
strategies, as well as portfolio optimization, where the financial models are
often noisy and non-differentiable.

Energy Systems: Optimizing the operation and design of energy systems,
such as power grids, renewable energy installations, and energy storage
systems, to improve efficiency and stability.

Material Science: Discovering new materials with desirable properties
(e.g., strength, conductivity) by optimizing the composition and
processing parameters.

Healthcare and Medicine: Personalizing treatment plans and drug
formulations by optimizing the dosage and combination of therapies for
individual patients.

Chemistry and Biochemistry: Optimizing chemical reactions and
biological processes for higher yield, efficiency, and reduced side products
in chemical engineering and biotechnology.

Black-Box Optimization

® In these application settings, the associated loss function is ofen complex,
non-differentiable, noisy, or not explicitly known.

® As a result, we cannot hope for computing the gradient nor the Hessian of
the underlying loss function.

® Thereore, we need to consider non-convex optimization with bandit
feedback.

® This problem is often referred to as black-box optimization.

Discretization-Based Search

® | et us consider
min f(x
xeC ()
where C is the domain and f is the loss function.

® For black-box optimization, we make minimal assumptions on the loss
function f.

® That said, we consider the general setting where the loss function can be
non-convex and non-differentiable.

® On the other hand, in some applications, the underlying loss function is
continuous.

® The example in Figure 1 is indeed continuous, even though its structure is
highly complex.

Discretization-Based Search

® Motivated by this, we consider the setting where the loss function is
Lipschitz continuous.

® Throughout this section, we assume that f is L-Lipschitz continuous in a
norm || - ||, i.e.,

[£(x) = F()I < Lllx = yll.

® The goal is to find a near-optimal solution x. for a given ¢ > 0 such that

f(xe) < min f(x)+e.

® As the loss function f is Lipschitz continuous, our approach is to find a
point that is close to an optimal solution.

Discretization-Based Search

® Then, how do we find such a point?

® The most naive way is to discretize the solution space and search over the
discrete set of points.
® To be more precise, we consider the following two steps.

@ First, discretize the domain C to obtain a finite subset Cc C C containing
an e-optimal solution.

® Next, enumerate all points in Ce.

® Hence, as long as the discretization C. contains an e-optimal solution x,
the search procedure will find one.

® The iteration complexity of this algorithm is the number of points in C.

® Therefore, the part of constructing a discretization C. is crucial.

Discretization-Based Search

To simplify our presentation, we assume that
® the domain is given by C = [0,1]¢,

® we use the foo-norm, i.e., |

=1 lloc. and

® 1/Leis an integer.

Based on these assumptions, we partition the domain C = [0, 1]¢ into

(1/Le)?

boxes by decomposing each coordinate interval [0, 1] into

[0,e/L], [e/L,2¢/L], ..., [1—¢/L,1].

Discretization-Based Search

® Then a box has the form

[M E] {(’2—1)67'26} |:/d_1)€ Id€:|

L L L L

:{xeRd: @<xj<— Vje[d]}

Discretization-Based Search

® For a given box, we take the center point given by

<<f—;>e (o 1)e (—))

[, I RN [

® Note that there are (1/Le)? center points from the (1/Le)? boxes.
® Basically, the set of center points gives rise to a desired discretization C..

® The algorithm is to enumerate all center points and return the one
achieving the minimum loss value.

Discretization-Based Search

® How do we establish the correctness of this approach?

® Note that any two points x, y in a piece satisfies
[x = ylle < €/L,
which implies that
1F() = fF()I < Lllx = yllo < €.

® Let c* be the center point of the box containing an optimal solution.

® Then it follows that
f(c") < mig f(x)+e
xE€

® |et C be the center point returned by the algorithm.

® By the choice of ¢, we have that
f(c) < f(c") < melg f(x) +e,

as required.

Issues with the Discretization-Based Search

® The algorithm is based on a fixed discretization.

® As a result, the algorithm always takes (1/Le)? steps to finish search over
all points in the discretization.

® Another issue is that we require knowledge of the Lipschitz constant L.

® Furthermore, the most critical issue with the method is that we need the

assumption that the loss function is Lipschitz continuous over the entire
domain.

Optimistic Optimization

® We cover a framework of Munos [Mun11], referred to as simultaneous
optimistic optimization (SOO).

® The SOO framework works under the following weaker assumption than
the global Lipschitz continuity assumption.

Assumption

There exists some L > 0 such that for any x € C,
f(x) = f(x") < Llx = x|
where x* is an optimal solution to minkecc f(x).

® Hence, we assume Lipschitz continuity around an optimal solution, which
is essentially a local Lipschitz continuity assumption.

Optimistic Optimization

® Another favorable aspect of SOO is that it does not need to know the
Lipschitz constant L.

® How is this possible?

® Recall that the previous approach needs to know L because it prepares a
fixed discretization based on the parameter L.

® |n contrast, instead of one fixed discretization, the SOO framework starts
with a rough partition of the domain, and it gradually refines it.

® To be more specific, SOO works with the idea of hierarchical partitioning.

® First, the domain C is partitioned into K subsets. Here, one may represent
the K subsets as K children of paraent C.

® Then, we may choose one of the K subsets and partition it into K subsets.

Optimistic Optimization

Figure: Partitioning of the domain

Optimistic Optimization

® \We may continue partitioning pieces.

® From the second partition of Figure 2, we can choose one of the two large
subsets or one of the three smaller subsets.

® Figure 3 shows a sequence of more refined partitions of the domain C.

Figure: Refined partitions

Optimistic Optimization

® The hierarchical partitioning structure naturally gives rise to a tree
representation as in Figure 4.

h=0 | |

h=1} L | f |

h=21<1111

h=3 H—+++++++1eleleetote

Partition: | T Loy I |

Figure: Tree representation of a partition

Optimistic Optimization

® Note that hierarchical partitioning can be done without knowledge of the
Lipschitz constant L.

® The main idea behind the SOO framework is to choose subsets that are
expected to contain an optimal solution and refine them gradually.

® As the algorithm from the previous section, SOO takes a center point of
each subset.

® Then the quality of the subset is measured by the loss value of its center
point.

Optimistic Optimization

® Another important component of SOO is the idea of optimistic search.
® At each iteration, we need to choose which subset to be partitioned.
® The choice is made based on two criteria.

® On one hand, it makes sense to focus on subsets whose center points have
low loss values.

® On the other hand, a large subset is not explored enough yet, so its
unexplored region may contain a good solution.

® This is similar in spirit to the exploration-exploitation tradeoff.

Optimistic Optimization

® To be more specific, we use notation (h,j) to denote the jth subset at
depth h.

® Here, (0,0) refers to the original domain C.
® Then we denote by x5 ; the center point of (h,J).
® Then the quality of subset (h,j) is measured by f(xp;).

® Then, the next question is about how to choose a subset that is
unexplored?

® \We may select a subset at a high level in the tree representation.

Optimistic Optimization

Algorithm 1 Simultaneous Optimistic Optimization

Input: the maximum depth function hmax : Z — Z.
Initialize 73 = {(0,0)} and t = 1.
while True do
Set Vmin = 00.
for h = 0 to min{depth(7:), hmax(t)} do
Among all leaves (h,j) € L, of depth h, select

(/‘I7 i) S argmin(hyj)eﬁtf(xh,j)

if f(Xh,,') < Vmin then
Partition the subset (h, i) into K subsets (h+1,i),...,(h+1,ik).
Add them to 7:.

Evaluate f(xpt1,i,),-- -, f(XhHJK)-
Set Vimin = f(Xn,i).
if t =T then
Return argmaxy, 7 f (Xn,i)
end if
end if
end for

end while

Black-Box Optimization via Supervised Learning

® Black-box optimization framework applies to settings where the objective
function is not known to the decision-maker.

® Basically, we consider

min f(x)

where the decision-maker has access to none of the gradient Vf(x) and
the Hessian V?f(x).

® We find a solution based on bandit feedback which exhibits the value f(x)
of a chosen solution x.

® We learned optimistic optimization methods, which explore the solution
space based on continuity of the objective function.

® The main idea behind the optimistic optimization methods is that we
provide a hierarchical partitioning of the search space.

® Based on the partitioning, we optimistically explore subsets of the search
space.

Black-Box Optimization via Supervised Learning

® The optimistic optimization algorithms are widely used in practice because
they rely on minimal structural assumptions on the objective function.

® On the other hand, they often fall into inferior performance than
instance-specific methods that are implemented with some knowledge of
the problem environment.

® That is because they do not exploit any underlying structures of the
objective function.

® This motivates the question of how to explore and exploit the
underlying structure of the function.

Black-Box Optimization via Supervised Learning

® In this lecture, we discuss some supervised learning methods to learn and
approximate the unknown objective function.

® More importantly, based on the learned model and function, we are
interested in finding a good solution that guarantees a small loss value.

® Basically, we are given n data points

(x1, F(x1)), .- (Xn, F(xn)),

from which we infer the underlying function f.

Optimizing over a Trained Neural Network

® One of the most practical supervised learning is to use a neural network to
learn the underlying model.

® Based on a data set of n points (x1, y1), ..., (Xn, ¥n) with y; = f(x;) for
i € [n], one may train a neural network by considering

mein Zé(fg(xi)7y,-).

® Here, the trained neural network fy provides an approximation of the
objective function f.

® Then, we may find a solution that achieves a small f value by considering

min £y (x).

Optimizing over a Trained Neural Network

® Feed-forward neural networks with RelLU activations functions are
commonly used for approximating the unknown objective function in
practice [PTAT22].

® \We discuss how to find an input solution that optimizes the output value
of a trained feed-forward neural network with ReLU activation.

® In particular, we explain the basic formulation due to Fischetti and Jo
[FJ18] and Serra et al. [STR18].

Optimizing over a Trained Neural Network

® | et us discuss the case of a neural network with a single hidden layer.

e Let x € RY be the input, prepared by d input neurons. There are m
neurons in the single hidden layer.

e Let the input of the ith neuron in the hidden layer be given by w;" x + b;.
Then the output of the neuron is

ReLU(W,»TX + bi).

® |et a; denote the weight between the ith neuron in the hidden layer and
the output node.

® Then the output of the neural network is given by

fo(x) = Z ai - ReLU(w;' x + b;).

i=1

Optimizing over a Trained Neural Network

® Then the problem boils down to solving

n
min E ait;
xeC .

i=1

st. ti=ReLU(w; x+ b;), i€ [n].

(1)

Optimizing over a Trained Neural Network

® Recall that
x, if x>0,
0, otherwise.

ReLU(x) = {

e Let ¢; and u; denote the lower and upper bounds of w;' x + b; over C
given by

li = inf {W,-TX—F b,-} , Ui =sup {W;TX+ b,-}.
xeC xeC

Optimizing over a Trained Neural Network

® Then, we can argue that t; = ReLU(w;' x + b;) holds if and only if ;
satisfies

t >0,

ti > w; x + b,

t < u z,

ti <w;' x+ b — £i(1 — z),

for some z € {0, 1}.

Optimizing over a Trained Neural Network

® Therefore, (1) can be formulated as

st. >0, i€][n]
ti >w' x+bi, i€][n]
t<ulz, ieln]
t<w' x4+ b —li(1—2z), ieln]
z € {0,1}, i€]n].

® The formulation simply extends to the case of multiple hidden layers.

Optimizing over a Trained Neural Network

® More recently, Anderson et al. [AHM*20] and Tsay et al. [TKTM21]
developed computationally improved formulations for optimizing a trained
feed-forward neural network with ReLU activation.

References
[AHM+20] Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja,
and Juan Pablo Vielma. Strong mixed-integer programming
formulations for trained neural networks. Mathematical
Programming, 183:3-39, 2020.

[FJ18] Matteo Fischetti and Jason Jo. Deep neural networks and mixed
integer linear optimization. Constraints, 23:296-309, 2018.

[Mun1l] Rémi Munos. Optimistic optimization of a deterministic function
without the knowledge of its smoothness. In J. Shawe-Taylor,
R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems, volume 24.
Curran Associates, Inc., 2011.

[PTAT22] Theodore P Papalexopoulos, Christian Tjandraatmadja, Ross
Anderson, Juan Pablo Vielma, and David Belanger. Constrained
discrete black-box optimization using mixed-integer programming.
In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of
the 39th International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pages
17295-17322. PMLR, 17-23 Jul 2022.

[STR18] Thiago Serra, Christian Tjandraatmadja, and Srikumar
Ramalingam. Bounding and counting linear regions of deep neural
networks. In Jennifer Dy and Andreas Krause, editors, Proceedings

Dabeen Lee Lecture 11: Black-Box Optimization

[TKTM21]

References

of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages
4558-4566. PMLR, 10-15 Jul 2018.

Calvin Tsay, Jan Kronqvist, Alexander Thebelt, and Ruth Misener.
Partition-based formulations for mixed-integer optimization of
trained relu neural networks. In M. Ranzato, A. Beygelzimer,

Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, volume 34,
pages 3068-3080. Curran Associates, Inc., 2021.

Dabeen Lee Lecture 11: Black-Box Optimization

	References

