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® Introduction to black-box optimization
® Discretization-based search
® QOptimistic optimization

® QOptimizing over a trained neural network



Non-Convex Optimization

® Many problems in practice involve non-convex loss functions.

® | oss functions that arise in real-world applications can be as complex as

the example in Figure 1.
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Figure: Rastrigin Function in 2D



Non-Convex Optimization

® Various algorithms exist for non-convex optimization.

® For example, gradient descent with Hessian steps, the cubic regularization
method, and perturbed gradient descent.

® These algorithms are designed to find second-order stationary points or
local minima under appropriate assumptions on the loss function.

® There indeed exist many applications where it is difficult to analyze the
gradient and Hessian of the underlying loss function.



Black-Box Optimization

Application Scenarios

® Engineering Design: Optimizing the design of complex systems and
structures (e.g., aerodynamics of aircraft, structural design of bridges)
where simulations are used to evaluate performance.

® Machine Learning and Hyperparameter Tuning: Tuning
hyperparameters of machine learning models, such as neural networks,
support vector machines, and random forests, to achieve better
performance on training and validation data.

® Robotics: Optimizing control parameters and policies for robotic systems
where the dynamics are complex and non-linear.
® Gaming and Al: Developing and tuning artificial intelligence for games,

including the optimization of strategies and behaviors in complex
environments.



Black-Box Optimization

Application Scenarios

Finance and Trading: Developing and optimizing trading algorithms and
strategies, as well as portfolio optimization, where the financial models are
often noisy and non-differentiable.

Energy Systems: Optimizing the operation and design of energy systems,
such as power grids, renewable energy installations, and energy storage
systems, to improve efficiency and stability.

Material Science: Discovering new materials with desirable properties
(e.g., strength, conductivity) by optimizing the composition and
processing parameters.

Healthcare and Medicine: Personalizing treatment plans and drug
formulations by optimizing the dosage and combination of therapies for
individual patients.

Chemistry and Biochemistry: Optimizing chemical reactions and
biological processes for higher yield, efficiency, and reduced side products
in chemical engineering and biotechnology.



Black-Box Optimization

® In these application settings, the associated loss function is ofen complex,
non-differentiable, noisy, or not explicitly known.

® As a result, we cannot hope for computing the gradient nor the Hessian of
the underlying loss function.

® Thereore, we need to consider non-convex optimization with bandit
feedback.

® This problem is often referred to as black-box optimization.



Discretization-Based Search

® | et us consider
min  f(x
xeC ( )
where C is the domain and f is the loss function.

® For black-box optimization, we make minimal assumptions on the loss
function f.

® That said, we consider the general setting where the loss function can be
non-convex and non-differentiable.

® On the other hand, in some applications, the underlying loss function is
continuous.

® The example in Figure 1 is indeed continuous, even though its structure is
highly complex.



Discretization-Based Search

® Motivated by this, we consider the setting where the loss function is
Lipschitz continuous.

® Throughout this section, we assume that f is L-Lipschitz continuous in a
norm || - ||, i.e.,

[£(x) = F()I < Lllx = yll.

® The goal is to find a near-optimal solution x. for a given ¢ > 0 such that

f(xe) < min f(x)+e.

® As the loss function f is Lipschitz continuous, our approach is to find a
point that is close to an optimal solution.



Discretization-Based Search

® Then, how do we find such a point?

® The most naive way is to discretize the solution space and search over the
discrete set of points.
® To be more precise, we consider the following two steps.

@ First, discretize the domain C to obtain a finite subset Cc C C containing
an e-optimal solution.

® Next, enumerate all points in Ce.

® Hence, as long as the discretization C. contains an e-optimal solution x,
the search procedure will find one.

® The iteration complexity of this algorithm is the number of points in C.

® Therefore, the part of constructing a discretization C. is crucial.



Discretization-Based Search

To simplify our presentation, we assume that
® the domain is given by C = [0,1]¢,

® we use the foo-norm, i.e., |

=1 lloc. and

® 1/Leis an integer.

Based on these assumptions, we partition the domain C = [0, 1]¢ into

(1/Le)?

boxes by decomposing each coordinate interval [0, 1] into

[0,e/L], [e/L,2¢/L], ..., [1—¢/L,1].



Discretization-Based Search

® Then a box has the form
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Discretization-Based Search

® For a given box, we take the center point given by

<<f—;>e (o 1)e (—))
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® Note that there are (1/Le)? center points from the (1/Le)? boxes.
® Basically, the set of center points gives rise to a desired discretization C..

® The algorithm is to enumerate all center points and return the one
achieving the minimum loss value.



Discretization-Based Search

® How do we establish the correctness of this approach?

® Note that any two points x, y in a piece satisfies
[x = ylle < €/L,
which implies that
1F() = fF()I < Lllx = yllo < €.

® Let c* be the center point of the box containing an optimal solution.

® Then it follows that
f(c") < mig f(x)+e
xE€

® |et C be the center point returned by the algorithm.

® By the choice of ¢, we have that
f(c) < f(c") < melg f(x) +e,

as required.



Issues with the Discretization-Based Search

® The algorithm is based on a fixed discretization.

® As a result, the algorithm always takes (1/Le)? steps to finish search over
all points in the discretization.

® Another issue is that we require knowledge of the Lipschitz constant L.

® Furthermore, the most critical issue with the method is that we need the

assumption that the loss function is Lipschitz continuous over the entire
domain.



Optimistic Optimization

® We cover a framework of Munos [Mun11], referred to as simultaneous
optimistic optimization (SOO).

® The SOO framework works under the following weaker assumption than
the global Lipschitz continuity assumption.

Assumption

There exists some L > 0 such that for any x € C,
f(x) = f(x") < Llx = x|
where x* is an optimal solution to minkecc f(x).

® Hence, we assume Lipschitz continuity around an optimal solution, which
is essentially a local Lipschitz continuity assumption.



Optimistic Optimization

® Another favorable aspect of SOO is that it does not need to know the
Lipschitz constant L.

® How is this possible?

® Recall that the previous approach needs to know L because it prepares a
fixed discretization based on the parameter L.

® |n contrast, instead of one fixed discretization, the SOO framework starts
with a rough partition of the domain, and it gradually refines it.

® To be more specific, SOO works with the idea of hierarchical partitioning.

® First, the domain C is partitioned into K subsets. Here, one may represent
the K subsets as K children of paraent C.

® Then, we may choose one of the K subsets and partition it into K subsets.



Optimistic Optimization

Figure: Partitioning of the domain



Optimistic Optimization

® \We may continue partitioning pieces.

® From the second partition of Figure 2, we can choose one of the two large
subsets or one of the three smaller subsets.

® Figure 3 shows a sequence of more refined partitions of the domain C.

Figure: Refined partitions



Optimistic Optimization

® The hierarchical partitioning structure naturally gives rise to a tree
representation as in Figure 4.
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Figure: Tree representation of a partition



Optimistic Optimization

® Note that hierarchical partitioning can be done without knowledge of the
Lipschitz constant L.

® The main idea behind the SOO framework is to choose subsets that are
expected to contain an optimal solution and refine them gradually.

® As the algorithm from the previous section, SOO takes a center point of
each subset.

® Then the quality of the subset is measured by the loss value of its center
point.



Optimistic Optimization

® Another important component of SOO is the idea of optimistic search.
® At each iteration, we need to choose which subset to be partitioned.
® The choice is made based on two criteria.

® On one hand, it makes sense to focus on subsets whose center points have
low loss values.

® On the other hand, a large subset is not explored enough yet, so its
unexplored region may contain a good solution.

® This is similar in spirit to the exploration-exploitation tradeoff.



Optimistic Optimization

® To be more specific, we use notation (h,j) to denote the jth subset at
depth h.

® Here, (0,0) refers to the original domain C.
® Then we denote by x5 ; the center point of (h,J).
® Then the quality of subset (h,j) is measured by f(xp;).

® Then, the next question is about how to choose a subset that is
unexplored?

® \We may select a subset at a high level in the tree representation.



Optimistic Optimization

Algorithm 1 Simultaneous Optimistic Optimization

Input: the maximum depth function hmax : Z — Z.
Initialize 73 = {(0,0)} and t = 1.
while True do
Set Vmin = 00.
for h = 0 to min{depth(7:), hmax(t)} do
Among all leaves (h,j) € L, of depth h, select

(/‘I7 i) S argmin(hyj)eﬁtf(xh,j)

if f(Xh,,') < Vmin then
Partition the subset (h, i) into K subsets (h+1,i),...,(h+1,ik).
Add them to 7:.

Evaluate f(xpt1,i,),-- -, f(XhHJK)-
Set Vimin = f(Xn,i).
if t =T then
Return argmaxy, 7 f (Xn,i)
end if
end if
end for

end while




Black-Box Optimization via Supervised Learning

® Black-box optimization framework applies to settings where the objective
function is not known to the decision-maker.

® Basically, we consider

min  f(x)

where the decision-maker has access to none of the gradient Vf(x) and
the Hessian V?f(x).

® We find a solution based on bandit feedback which exhibits the value f(x)
of a chosen solution x.

® We learned optimistic optimization methods, which explore the solution
space based on continuity of the objective function.

® The main idea behind the optimistic optimization methods is that we
provide a hierarchical partitioning of the search space.

® Based on the partitioning, we optimistically explore subsets of the search
space.



Black-Box Optimization via Supervised Learning

® The optimistic optimization algorithms are widely used in practice because
they rely on minimal structural assumptions on the objective function.

® On the other hand, they often fall into inferior performance than
instance-specific methods that are implemented with some knowledge of
the problem environment.

® That is because they do not exploit any underlying structures of the
objective function.

® This motivates the question of how to explore and exploit the
underlying structure of the function.



Black-Box Optimization via Supervised Learning

® In this lecture, we discuss some supervised learning methods to learn and
approximate the unknown objective function.

® More importantly, based on the learned model and function, we are
interested in finding a good solution that guarantees a small loss value.

® Basically, we are given n data points

(x1, F(x1)), .- (Xn, F(xn)),

from which we infer the underlying function f.



Optimizing over a Trained Neural Network

® One of the most practical supervised learning is to use a neural network to
learn the underlying model.

® Based on a data set of n points (x1, y1), ..., (Xn, ¥n) with y; = f(x;) for
i € [n], one may train a neural network by considering

mein Zé(fg(xi)7y,-).

® Here, the trained neural network fy provides an approximation of the
objective function f.

® Then, we may find a solution that achieves a small f value by considering

min £y (x).



Optimizing over a Trained Neural Network

® Feed-forward neural networks with RelLU activations functions are
commonly used for approximating the unknown objective function in
practice [PTAT22].

® \We discuss how to find an input solution that optimizes the output value
of a trained feed-forward neural network with ReLU activation.

® In particular, we explain the basic formulation due to Fischetti and Jo
[FJ18] and Serra et al. [STR18].



Optimizing over a Trained Neural Network

® | et us discuss the case of a neural network with a single hidden layer.

e Let x € RY be the input, prepared by d input neurons. There are m
neurons in the single hidden layer.

e Let the input of the ith neuron in the hidden layer be given by w;" x + b;.
Then the output of the neuron is

ReLU(W,»TX + bi).

® |et a; denote the weight between the ith neuron in the hidden layer and
the output node.

® Then the output of the neural network is given by

fo(x) = Z ai - ReLU(w;' x + b;).

i=1



Optimizing over a Trained Neural Network

® Then the problem boils down to solving

n
min E ait;
xeC .

i=1

st. ti=ReLU(w; x+ b;), i€ [n].

(1)



Optimizing over a Trained Neural Network

® Recall that
x, if x>0,
0, otherwise.

ReLU(x) = {

e Let ¢; and u; denote the lower and upper bounds of w;' x + b; over C
given by

li = inf {W,-TX—F b,-} , Ui =sup {W;TX+ b,-}.
xeC xeC



Optimizing over a Trained Neural Network

® Then, we can argue that t; = ReLU(w;' x + b;) holds if and only if ;
satisfies

t >0,

ti > w; x + b,

t < u z,

ti <w;' x+ b — £i(1 — z),

for some z € {0, 1}.



Optimizing over a Trained Neural Network

® Therefore, (1) can be formulated as

st. >0, i€][n]
ti >w' x+bi, i€][n]
t<ulz, ieln]
t<w' x4+ b —li(1—2z), ieln]
z € {0,1}, i€]n].

® The formulation simply extends to the case of multiple hidden layers.



Optimizing over a Trained Neural Network

® More recently, Anderson et al. [AHM*20] and Tsay et al. [TKTM21]
developed computationally improved formulations for optimizing a trained
feed-forward neural network with ReLU activation.
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