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Submodular set function

• A function f : 2V → R over the subsets of finite ground set V is
submodular if

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B) ∀A,B ⊆ V .

• Submodularity is equivalent to the diminishing (marginal) returns property.

• To be precise, f : 2V → R is submodular if and only if

f (A ∪ {v})− f (A)︸ ︷︷ ︸
marginal return from adding v to A

≥ f (B ∪ {v})− f (B)︸ ︷︷ ︸
marginal return from adding v to B

∀A ⊆ B, v 6∈ B

• A common analogy: at a buffet restaurant, you feel less happy with the
second plate than with the first plate.
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Examples of submodular set functions

The area covered by sensors

1

Figure: Adding sensor s′ to {s1, s2} (left) and {s1, s2, s3, s4} (right)

• Let Av be the area covered by a sensor v .

• Then f defined as

f (S) =

∣∣∣∣∣⋃
v∈S

Av

∣∣∣∣∣ , S ⊆ V

is submodular.

1Taken from [Krause and Golovin, 2014] 5/31



Examples of submodular set functions

Joint stochastic utility

2

Figure: Employees with random performance

• n employees with random performance values X1, . . . ,Xn.

• Then

E
{

max
v∈S

Xv

}
, E


√∑

v∈S

Xv

 , E


√∑

v∈S

X 2
v


are all submodular functions over S ⊆ V .

2Taken from Milan Vojnovic’s slides. 6/31



Submodular set function maximization

Submodular function maximization (SFM)

maximize f (S)

subject to S ∈ F ⊆ 2V

where

• f is submodular and monotone, i.e., f (A) ≤ f (B) for any A ⊆ B,

• F is the constraint set.

Constraint set examples:

• Cardinality constraint: F = {S ⊆ V : |S | ≤ k}.
• Knapsack constraint: F =

{
S ⊆ V :

∑
i∈S ci ≤ B

}
.

• Matroid: F = {S ⊆ V : S is an independent set of matroid M}.
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Applications of SFM

Business operations

• Online freelancing platforms [Sekar et al., 2020].

• Team selection - sports teams, online gaming [Kleinberg and Raghu, 2015].

• Assortment selection in online shopping websites [Udwani, 2021].

• Influence maximization [Kempe et al., 2003].

Machine learning

• Feature and variable selection [Krause and Guestrin, 2005].

• Dictionary learning [Das and Kempe, 2011].

• Document summarization [Lin and Bilmes, 2010, 2011].

• Image summarization [Mirzasoleiman et al., 2018, Tschiatschek et al., 2014].

• Active set selection in non-parametric learning [Mirzasoleiman et al., 2016].
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NP-hardness of SFM

• [Cornuéjols et al., 1977]

SFM is NP-hard even with a monotone objective subject to a cardinality
constraint.

• No polynomial time exact algorithm is known.

• If one exists, it would imply a polynomial time exact algorithm for
traveling salesman problem (TSP).

• However, there exist polynomial time constant approximation algorithms.
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Approximation algorithm

• We say that a solution S̄ ∈ F is α-approximate for some α ∈ [0, 1] if

f (S̄) ≥ α ·max
S∈F

f (S).

• An α-approximation algorithm would always find an α′-approximate
solution for some α′ ≥ α for every instance of SFM.

• In other words, the worst-case guarantee is always as good as α times the
optimal value.

• A constant approximation algorithm is an α-approximation algorithm for
some fixed α > 0.
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Greedy algorithm

• Let us explain a simple greedy algorithm by [Nemhauser et al., 1978] that
guarantees an (1− 1/e)-approximate solution.

• The idea is that until we reach the size limit, we take an element that
achieves the maximum marginal return value.

Algorithm 1 Greedy algorithm for submodular maximization

Initialize S = ∅
while |S | < k do

Take an element v ∈ arg max {f (S ∪ {v})− f (S) : v ∈ V \ S}
end while
Return S
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Greedy algorithm

Theorem ([Nemhauser et al., 1978])

Let S̄ ⊆ V be the outcome of Algorithm 1. Assume that f (∅) = 0. Then

f (S̄) ≥
(

1− 1

e

)
max {f (S) : |S | ≤ k} .
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Greedy algorithm
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Approximation algorithms for SFM

Monotone SFM

• [Nemhauser et al., 1978]

(1− 1/e)-approximation algorithm for a cardinality constraint, where
(1− 1/e) ≈ 0.63. Moreover, the factor (1− 1/e) is tight.

• [Sviridenko, 2004]

(1− 1/e)-approximation algorithm for a knapsack constraint.

• [Calinescu et al., 2007, Vondrak, 2008]

(1− 1/e)-approximation algorithm for a matroid constraint.

• [Kulik et al., 2009]

(1− 1/e)-approximation algorithm for a system of linear constraints.

There are constant approximation algorithms for non-monotone SFM.
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Approximation algorithm for a matroid constraint

Outline

• Obtain a continuous relaxation of (discrete) SFM.

• Solve the continuous relaxation.

• Round the (fractional) solution to obtain a (discrete) solution to SFM.
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Approximation algorithm for a matroid constraint

Outline

• Obtain a continuous relaxation of (discrete) SFM.

→Multilinear extension + Polymatroid

• Solve the continuous relaxation.

→ Continuous greedy algorithm

• Round the (fractional) solution to obtain a (discrete) solution to SFM.

→ Pipage rounding
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Multilinear extension

Multilinear extension [Vondrak, 2008]

• A set function f : 2V → R can be turned into a function f : {0, 1}V → R
over binary variables.

• Given f : {0, 1}V → R,

F (x) =
∑
S⊆V

f (S)
∏
v∈S

xv
∏
v 6∈S

(1− xv ) for x ∈ [0, 1]V

is the multilinear extension of f .

• Note that
F (1S) = f (S) for every S ⊆ V .

• Moreover,
F (x) = ES∼x [f (S)]

where S ∼ x means sampling S by selecting each v with probility xv .
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Polymatroid

Polymatroid [Edmonds, 1970]

• Matroid constraint set is given by

F = {S ⊆ V : S is an independent set of matroid M} .

• What is the right continuous relaxation for F?

• For S ⊆ V , rank(S) is defined by the max size of an independent set in S .

• Then the polymatroid of matroid M is given by

P =

{
x ∈ [0, 1]V :

∑
v∈S

xv ≤ rank(S) ∀S ⊆ V

}
.

• Here, P ∩ {0, 1}V = F .

18/31



Continuous relaxation

• Given the multilinear extension F and the polymatroid P,

maximize F (x)

subject to x ∈ P ⊆ [0, 1]V

is a continuous relaxation of SFM, given by

maximize f (S)

subject to S ∈ F ⊆ 2V .

• In particular,
max
x∈P

F (x) ≥ max
S∈F

f (S).
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Continuous greedy algorithm

Algorithm 2 Continuous greedy algorithm [Calinescu et al., 2007, Vondrak, 2008]

Start with x(0) = 0.
Let v(x) = arg maxv∈P

{
∇F (x)>v

}
.

Set dx/dt = v(x).
Output x(1).

• We can discretize the algorithm.

Theorem ([Calinescu et al., 2007, Vondrak, 2008])

x(1) ∈ P and

F (x(1)) ≥
(

1− 1

e

)
max
S∈F

f (S)
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Pipage rounding

Theorem ([Ageev and Sviridenko, 2004, Calinescu et al., 2007])

There is a randomized polynomial time algorithm that given any x ∈ P, returns
S ∈ F with

E [f (S)] ≥ F (x).

Together with the previous theorem,

E [f (S)] ≥ F (x(1)) ≥
(

1 − 1

e

)
max
S∈F

f (S).
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Extension to the continuous domain

Extension

• There were two continuous components in the algorithm.

1. Multilinear extension

2. Continuous greedy algorithm

• We extend the multilinear extension to continuous submodular functions.

• We adapt the continuous greedy algorithm to develop the conditional
gradient method, which is a first-order iterative algorithm.
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Properties of the multilinear extension

• Recall that the multilinear extension is given by

F (x) =
∑
S⊆V

f (S)
∏
v∈S

xv
∏
v 6∈S

(1− xv ).

• It satisfies the following diminishing returns (DR) property:

F (x + δei )− F (x) ≥ F (y + δei )− F (y)

for any δ ≥ 0 and x , y ∈ [0, 1]V with x ≤ y .

• The multilinear extension is neither convex nor concave.

• But it is concave along any nonnegative direction (up-concave) v ≥ 0, i.e.,

g(t) = F (x + t · v)

is concave with respect to t.

• The multilinear extension is smooth, i.e. there exists β > 0 such that

‖∇F (x)−∇F (y)‖2 ≤ β‖x − y‖2.

• Based on these properties, we extend submodularity to continuous
functions.
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Continuous DR-submodular function

• We say that a function F : Rd → R is (continuous) DR-submodular if it
satisfies the diminishing returns (DR) property.

• For some domain C ,

F (x + δei )− F (x) ≥ F (y + δei )− F (y)

for any δ ≥ 0 and x , y ∈ C with x ≤ y .

Lemma ([Bian et al., 2017])

If F is DR-submodular, then it is up-concave.
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Equivalent definitions and examples

More properties of DR-submodular functions [Bian et al., 2017]

• A differentiable function is DR-submodular if and only if

∇F (x) ≥ ∇F (y) for any x , y with x ≤ y .

• A twice-differentiable function is DR-submodular if and only if

∇2F (x) =

(
∂2F (x)

∂xi∂xj

)
≤ 0.

Examples

• Quadratic functions x>Ax/2 + b>x + c with A ≤ 0.

• ∑
i,j ϕi,j(xi − xj) where ϕi,j is convex for every i , j .

• g(
∑

i wixi ) where g is concave and w ≥ 0.

• logdet(
∑

i xiAi ) where each Ai is positive definite and x ≥ 0.
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Applications of DR-submodular functions

• Isotonic regression [Bach, 2018].

• Robust budget allocation [Soma et al., 2014, Staib and Jegelka, 2017].

• Online resource allocation [Eghbali and Fazel, 2016].

• Adwords for e-commerce and advertising [Devanur and Jain, 2012, Mehta et al.,

2005].

26/31



Continuous submodular maximization

Continuous submodular maximization

maximize F (x)

subject to x ∈ C

where

• F is continuous DR-submodular,

• F is monotone, i.e. F (x) ≤ F (y) for any x , y with x ≤ y ,

• C is a convex constraint set,

• 0 ∈ C ,

• C is down-closed, i.e. y ∈ C and 0 ≤ x ≤ y implies x ∈ C .

Conditional gradient method [Bian et al., 2017]

• Extension of the continuous greedy algorithm.

• Often called the Frank-Wolfe algorithm for submodular maximization.
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Conditional gradient method

Recall

Algorithm 2 Continuous greedy algorithm [Calinescu et al., 2007, Vondrak, 2008]

Start with x(0) = 0.
Let v(x) = arg maxv∈P

{
∇F (x)>v

}
.

Set dx/dt = v(x).
Output x(1).

The conditional gradient method for SFM is given by

Algorithm 3 Conditional gradient method [Bian et al., 2017]

Start with x0 = 0.
for t = 1, . . . ,T do

Obtain vt ∈ arg maxv∈C
{
∇F (xt−1)>v

}
.

Update xt = xt−1 + (1/T )vt .
end for
Output xT .
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Conditional gradient method

Theorem ([Bian et al., 2017])

Assume that F is monotone, β-smooth in the `2-norm, and DR-submodular.
We further assume that 0 ∈ C , C is down-closed, and ‖v‖2 ≤ R for any v ∈ R.
Then xT returned by conditional gradient (Algorithm 3) satisfies

F (xT ) ≥
(

1− 1

e

)
max
x∈C

F (x)− βR2

2T

under F (0) = 0.
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Conditional gradient method
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Conditional gradient method
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