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Outline

In this lecture, we consider the problem of maximizing a submodular set function. We first ana-
lyze the greedy algorithm for the cardinality constraint case. Then we introduce the continuous
relaxation-based approach for the matroid constraint case. Lastly, we cover the first-order method
for maximizing a continuous DR-submodular function.

1 Submodular function maximization

In this section, we consider the problem of maximizing a submodular function. Let f : 2|E| → R be
a submodular set function. We focus on the case where f is monotone, meaning that f(S) ≤ f(T )
if S ⊆ T . Then the problem is given by

maximize f(S) subject to S ∈ F (10.1)

where F ⊆ 2|E| is the collection of feasible subsets. What follows is a list of examples for F .

• Cardinality constraint: F = {S ⊆ E : |S| ≤ k}.

• Knapsack constraint: F =
{
S ⊆ E :

∑
i∈S ci ≤ B

}
.

• Matroid: F = {S ⊆ E : S is an independent set of matroid M}.

There are a wide range of applications in business operations, such as online freelancing plat-
forms [SVY20], team selection - sports teams, online gaming [KR15], assortment selection in online
shopping websites [Udw21], and influence maximization [KKT03]. Recently, submodular func-
tion maximization is applied to many machine learning problems, including feature and variable
selection [KG05], dictionary learning [DK11], document summarization [LB10, LB11], image sum-
marization [TIWB14, MJK18], and active set selection in non-parametric learning [MKSK16].

Submodular function maximization (SFM) is NP-hard even with a monotone objective subject to
a cardinality constraint [CFN77]. However, there exist polynomial time constant approximation
algorithms. We say that a solution S̄ ∈ F is α-approximate for some α ∈ [0, 1] if

f(S̄) ≥ α ·max
S∈F

f(S).

An α-approximation algorithm would always find an α′-approximate solution for some α′ ≥ α for
every instance of SFM. In other words, the worst-case guarantee is always as good as α times the
optimal value. A constant approximation algorithm is an α-approximation algorithm for some fixed
α > 0.

Let us explain a simple greedy algorithm by Nemhauser, Wolsey, and Fisher [NWF78] that guar-
antees an (1− 1/e)-approximate solution. The idea is that until we reach the size limit, we take an
element that achieves the maximum marginal return value.
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Algorithm 1 Greedy algorithm for submodular maximization

Initialize S = ∅
while |S| < k do

Take an element e ∈ arg max {f(S ∪ {e})− f(S) : e ∈ E \ S}
end while
Return S

Theorem 10.1 (Nemhauser, Wolsey, and Fisher [NWF78]). Let S̄ ⊆ E be the outcome of Algo-
rithm 1. Assume that f(∅) = 0. Then

f(S̄) ≥
(

1− 1

e

)
max {f(S) : |S| ≤ k} .

Proof. Let S∗ denote an optimal solution to SFM. Suppose that e1, . . . , ek is the sequence of el-
ements selected by the algorithm. For i ∈ {1, . . . , k}, we use notation Si = {e1, . . . , ei}. Then
S̄ = Sk.

Let us prove by induction that

f(S∗)− f(Si) ≤
(

1− 1

k

)i

f(S∗)

for all i ∈ {0, 1, . . . , k}. The claim trivially holds when i = 0. Suppose that f(S∗) − f(Si−1) ≤
(1− 1/k)i−1f(S∗) for some i ∈ {1, . . . , k}. Since f is submodular, we have

f(S∗)− f(Si−1) ≤
∑

e∈S∗\Si−1

(f(Si−1 ∪ {e})− f(Si−1)) .

Since ei has the maximum marginal return after Si−1, it follows that∑
e∈S∗\Si−1

(f(Si−1 ∪ {e})− f(Si−1)) ≤ |S∗ \ Si−1| (f(Si)− f(Si−1))

≤ k (f(Si)− f(Si−1)) .

Then it follows that

f(S∗)− f(Si) = f(S∗)− f(Si−1)− (f(Si)− f(Si−1))

≤
(

1− 1

k

)
(f(S∗)− f(Si−1))

≤
(

1− 1

k

)i

f(S∗)

where the second inequality is due to the induction hypothesis.

As a result, we have

f(S̄) = f(Sk) ≥

(
1−

(
1− 1

k

)k
)
f(S∗) ≥

(
1− 1

e

)
f(S∗),

as required.

In fact, the greedy algorithm can be extended to an (1 − 1/e)-approximation algorithm for the
knapsack constraint setting [Svi04].
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2 Matroid constraint

In this section, we explain an (1 − 1/e)-approximation algorithm for the matroid constraint set-
ting [CCPV07, Von08]. The outline of the algorithm works as follows.

1. First, obtain a continuous relaxation of the given submodular set function (multilinear relax-
ation).

2. Next, take a continuous relaxation of the feasible region (polymatroid).

3. Then solve the resulting continuous relaxation of the submodular function maximization
problem (continuous greedy algorithm).

4. Lastly, round the fractional solution to obtain a discrete solution (pipage rounding).

Let us explain one by one. Given a submodular set function f : {0, 1}|E| → R, we take the
multilinear extension of f given by

F (x) =
∑
S⊆E

f(S)
∏
e∈S

xe
∏
e 6∈S

(1− xe) for x ∈ [0, 1]|E|.

Note that we have
F (1S) = f(S) for every S ⊆ E.

Moreover,
F (x) = ES∼x [f(S)]

where S ∼ x means sampling S by selecting each e with probility xe. The matroid constraint set
is given by

F = {S ⊆ V : S is an independent set of matroid M} .

What is the right continuous relaxation for F? For S ⊆ E, rank(S) is defined by the max size of
an independent set in S. Then the polymatroid of matroid M is given by

P =

{
x ∈ [0, 1]|E| :

∑
e∈S

xe ≤ rank(S) ∀S ⊆ E

}
.

Here, P ∩ {0, 1}|E| = F . Given the multilinear extension of f and the polymatroid P , we obtain
the continuous relaxation given by

maximize F (x) subject to x ∈ P.

Let us present an algorithm that solves the continuous relaxation.

Algorithm 2 Continuous greedy algorithm [CCPV07, Von08]

Input: multilinear extension F and polymatroid P
Start with x(0) = 0.
Let v(x) = arg maxv∈P

{
∇F (x)>v

}
.

Set dx/dt = v(x).
Output x(1).
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Theorem 10.2 ([CCPV07, Von08]). Let x(t) for t ∈ [0, 1] denote the trajectory of the continuous
greedy algorithm (2). Then x(1) ∈ P and

F (x(1)) ≥
(

1− 1

e

)
max
S∈F

f(S).

By the theorem, the objective value by Algorithm 2 for the continuous relaxation is at least an
(1 − 1/e)-approximation of the maximum value of the submodular set function subject to the
matroid constraint.

The last step is to round the solution x(1) which potentially has fractional components.

Theorem 10.3 ([AS04, CCPV07]). There is a randomized polynomial time algorithm that given
any x ∈ P , returns S ∈ F with

E [f(S)] ≥ F (x).

Together with the previous theorem,

E [f(S)] ≥ F (x(1)) ≥
(

1− 1

e

)
max
S∈F

f(S).

3 Continuous submodular functions

In this section, we consider a continuous extension of the discrete submodular function maximization
problem. It is not difficult to observe that the multilinear extension of a submodular set function
satisfies the following diminishing returns (DR) property:

F (x+ δei)− F (x) ≥ F (y + δei)− F (y)

for any δ ≥ 0 and x, y ∈ [0, 1]|E| with x ≤ y. The multilinear extension is neither convex nor
concave. However, it is concave along any nonnegative direction (up-concave) v ≥ 0, i.e.,

g(t) = F (x+ t · v)

is concave with respect to t. Moreover, the multilinear extension is smooth, i.e. there exists β > 0
such that

‖∇F (x)−∇F (y)‖2 ≤ β‖x− y‖2.

Based on these properties, we extend submodularity to continuous functions.

We say that a function F : Rd → R is (continuous) DR-submodular if it satisfies the diminishing
returns (DR) property. For some domain C,

F (x+ δei)− F (x) ≥ F (y + δei)− F (y)

for any δ ≥ 0 and x, y ∈ C with x ≤ y.

Lemma 10.4 ([BMBK17]). If F is DR-submodular, then it is up-concave.

In addition, DR-submodular functions satisfy the following properties.

• A differentiable function is DR-submodular if and only if

∇F (x) ≥ ∇F (y) for any x, y with x ≤ y.
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• A twice-differentiable function is DR-submodular if and only if

∇2F (x) =

(
∂2F (x)

∂xi∂xj

)
≤ 0.

On top of the multilinear extension of a submodular set function, there exist other examples of
DR-submodular functions.

• Quadratic functions x>Ax/2 + b>x+ c with A ≤ 0.

•
∑

i,j ϕi,j(xi − xj) where ϕi,j is convex for every i, j.

• g(
∑

iwixi) where g is concave and w ≥ 0.

• logdet(
∑

i xiAi) where each Ai is positive definite and x ≥ 0.

Continuous DR-submodular arise in isotonic regression [Bac18], robust budget allocation [SJ17,
SKIK14], online resource allocation [EF16], and adwords for e-commerce and advertising [DJ12,
MSVV05]. Then we consider the following continuous DR-submodular maximization problem.

maximize F (x) subject to x ∈ C

where F is continuous DR-submodular, F is monotone, i.e. F (x) ≤ F (y) for any x, y with x ≤ y,
and C is a convex constraint set. We further assume that 0 ∈ C, C is bounded and down-closed,
i.e., if y ∈ C, then any 0 ≤ x ≤ y belongs to C. if To solve the problem, we may the continuous
greedy algorithm. We present the conditional gradient method due to Bian et al. [BMBK17],
which is also referred to as the Frank-Wolfe algorithm for submodular maximization.

Algorithm 3 Conditional gradient method

Start with x0 = 0.
for t = 1, . . . , T do

Obtain vt ∈ arg maxv∈C
{
∇F (xt−1)

>v
}

.
Update xt = xt−1 + (1/T )vt.

end for
Output xT .

Theorem 10.5 ([BMBK17]). Assume that F is monotone, β-smooth in the `2-norm, and DR-
submodular. We further assume that 0 ∈ C, C is down-closed, and ‖v‖2 ≤ R for any v ∈ R. Then
xT returned by conditional gradient (Algorithm 3) satisfies

F (xT ) ≥
(

1− 1

e

)
max
x∈C

F (x)− βR2

2T

under F (0) = 0.

Proof. Since F is β-smooth, we have

F (xt) ≥ F (xt−1) +∇F (xt−1)
>(xt − xt−1)−

β

2
‖xt − xt−1‖22

= F (xt−1) +
1

T
∇F (xt−1)

>vt −
β

2T 2
‖vt‖22.

(10.2)
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Let x∗ be an optimal solution, and let v∗ be defined as

v∗ := (x∗ ∨ x)− x = (x∗ − x) ∨ 0 ≥ 0

where p ∨ q for two vectors p and q takes the coordinate-wise maximum values of p and q. Then
we have 0 ≤ v∗ ≤ x∗, and the down-closedness of C implies that v∗ ∈ C. Moreover, it follows from
the monotonicity of F that

F (x+ v∗) = F (x∗ ∨ x) ≥ F (x∗) (10.3)

. Note that

∇F (xt−1)
>vt ≥ ∇F (xt−1)

>v∗ ≥ F (xt−1 + v∗)− F (xt−1) ≥ F (x∗)− F (xt−1)

where the first inequality is due to our choice of vT , the second inequality holds because v∗ ≥ 0
and F is up-concave, and the third one comes from (10.3). Combined with (10.2), we obtain

F (xt) ≥
(

1− 1

T

)
F (xt−1) +

1

T
F (x∗)− β

2T 2
R2.

This implies that

F (x∗)− F (xt) ≤
(

1− 1

T

)
(F (x∗)− F (xt−1)) +

βR2

2T 2

Furthermore, it follows that

F (x∗)− F (xT ) ≤
(

1− 1

T

)T

(F (x∗)− F (x0)) +
βR2

2T 2

T∑
t=1

(
1− 1

T

)t−1

≤ 1

e
(F (x∗)− F (x0)) +

βR2

2T
,

as required.

References

[AS04] A.A. Ageev and M.I. Sviridenko. Pipage rounding: A new method of constructing
algorithms with proven performance guarantee. Journal of Combinatorial Optimization,
8:307–328, 2004. 10.3

[Bac18] Francis Bach. Efficient algorithms for non-convex isotonic regression through submod-
ular optimization. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018. 3

[BMBK17] Andrew An Bian, Baharan Mirzasoleiman, Joachim Buhmann, and Andreas Krause.
Guaranteed Non-convex Optimization: Submodular Maximization over Domains. In
Aarti Singh and Jerry Zhu, editors, International Conference on Artificial Intelligence
and Statistics (AISTATS), volume 54 of Proceedings of Machine Learning Research,
pages 111–120, 20–22 Apr 2017. 10.4, 3, 10.5

[CCPV07] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a sub-
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