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Abstract. In this paper, we consider polytopes P that are contained in
the unit hypercube. We provide conditions on the set of infeasible 0,1
vectors that guarantee that P has a small Chvátal rank. Our conditions
are in terms of the subgraph induced by these infeasible 0,1 vertices in
the skeleton graph of the unit hypercube. In particular, we show that
when this subgraph contains no 4-cycle, the Chvátal rank is at most 3;
and when it has tree width 2, the Chvátal rank is at most 4. We also give
polyhedral decomposition theorems when this graph has a vertex cutset
of size one or two.

1 Introduction

Let Hn := [0, 1]n denote the 0,1 hypercube in Rn. Let P ⊆ Hn be a polytope.
Let S := P ∩{0, 1}n denote the set of 0,1 vectors in P . If an inequality cx ≥ d is
valid for P for some c ∈ Zn, then cx ≥ dde is valid for conv(S) since it holds for
any x ∈ P ∩ Zn. Chvátal [4] introduced an elegant notion of closure as follows.

P ′ =
⋂

c∈Zn

{x ∈ Rn : cx ≥ dmax{cx : x ∈ P}e}

is the Chvátal closure of P . Chvátal [4] proved that the closure of a rational
polyhedron is, again, a rational polyhedron. Recently, Dadush et al. [7] showed
that the Chvátal closure of any convex compact set is a rational polytope. Let
P (0) denote P and P (t) denote (P (t−1))′ for t ≥ 1. Then P (t) is the tth Chvátal
closure of P , and the smallest k such that P (k) = conv(S) is called the Chvátal
rank of P . Chvátal [4] proved that the Chvátal rank of every rational polytope
is finite, and Schrijver [11] later proved that the Chvátal rank of every rational
polyhedron is also finite.

Eisenbrand and Schulz [8] proved that the Chvátal rank of any polytope
P ⊆ Hn is O(n2 log n). Rothvoss and Sanitá [10] constructed a polytope P ⊆
Hn whose Chvátal rank is Ω(n2). However, some special polytopes arising in
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combinatorial optimization problems have small Chvátal rank; for example, the
fractional matching polytope has Chvátal rank 1. Hartmann, Queyranne and
Wang [9] gave a necessary and sufficient condition for a facet-defining inequality
of conv(S) to have rank 1. In this paper, we investigate 0,1 polytopes with a
Chvátal rank that is a small constant or grows slowly with n.

The skeleton of Hn is the graph G := (V,E) whose vertices correspond to the
2n extreme points of Hn and whose edges correspond to the 1-dimensional faces
of Hn, namely the n2n−1 line segments joining two extreme points of Hn that
differ in exactly one coordinate. Let S̄ := {0, 1}n \S denote the set of 0,1 vectors
that are not in P . Consider the subgraph G(S̄) of G induced by the vertices in
S̄. In this paper, we give conditions on G(S̄) that guarantee a small Chvátal
rank. For example, we show that when S̄ is a stable set in G, the Chvátal rank
of P is at most 1; when each connected component of G(S̄) is a cycle of length
greater than 4 or a path, the Chvátal rank is at most 2; when G(S̄) contains no
4-cycle, the Chvátal rank is at most 3; in particular when G(S̄) is a forest, the
Chvátal rank is at most 3; when the tree width of G(S̄) is 2, the Chvátal rank is
at most 4. In Section 4, we give polyhedral decomposition theorems for conv(S)
when G(S̄) contains a vertex cutset of cardinality 1 or 2. These decomposition
theorems are used to prove the results on forests and on graphs of tree width
two mentioned above. In Section 5, we give an upper bound on the Chvátal rank
of P that depends on the cardinality of S̄. In particular, we show that if only a
constant number of 0,1 vectors are infeasible, then the Chvátal rank of P is also
a constant. We also give a superpolynomial range on the number of infeasible
0,1 vectors where the upper bound of O(n2 log n) on the Chvátal rank obtained
by Eisenbrand and Schulz can be slightly improved to O(n2 log log n). Finally,
in Section 6, we show that optimizing a linear function over S is polynomially
solvable when the Chvátal rank of a canonical polytope for S is constant.

Although our results are mostly of theoretical interest, we mention two ap-
plications. The first is to the theory of clutters with the packing property. Abdi,
Cornuéjols and Pashkovich [1] constructed a class of minimal nonpacking clutters
from 0,1 polytopes with Chvátal rank at most 2. In particular, a 0,1 polytope
in [0, 1]5 where the infeasible 0,1 vectors induce 2 cycles of length 8 and the
remaining 16 points are feasible lead to the discovery of a new minimally non-
packing clutter on 10 elements. Another application occurs when S is the set of
0,1 vectors whose sum of entries is congruent to i modulo k. The cases k = 2
and k = 3 are discussed in Sections 2.1 and 3.

2 Some polytopes with small Chvátal rank

To prove results on a polytope P ⊂ [0, 1]n, we will work with a canonical polytope
QS that has exactly the same set S of feasible 0, 1 vectors. The description of
QS is as follows.

QS := {x ∈ [0, 1]n :
∑n

j=1 (x̄j(1− xj) + (1− x̄j)xj) ≥ 1/2 for x̄ ∈ S̄}.



The reason for working with QS is that the Chvátal rank of P is always less
than or equal to the Chvátal rank of QS . Furthermore, we have a good handle

on the kth Chvátal closure Q
(k)
S because of the following lemma.

Lemma 1 (CCH [5]). The middle points of all k+ 1 dimensional faces of Hn

belong to Q
(k)
S for 0 ≤ k ≤ n− 1.

Chvátal, Cook and Hartmann proved this result when S = ∅. The result

clearly follows for general S ⊆ {0, 1}n since Q∅ ⊆ QS implies Q
(k)
∅ ⊆ Q

(k)
S . We

also make repeated use of the two following results in our proofs.

Lemma 2. Consider a half-space D := {x ∈ Rn : dx ≥ d0}. Let T := D ∩
{0, 1}n and T̄ := {0, 1}n \ T . For every face F of Hn, the graph G(F ∩ T̄ ) is
connected. In particular G(T̄ ) is a connected graph.

Theorem 1 (AADK [2]). Let P be a polytope and let G = (V,E) be its
skeleton. Let S ⊂ V , S̄ = V \ S, and S̄1, . . . , S̄m be a partition of S̄ such
that there are no edges of G connecting S̄i, S̄j for all 1 ≤ i < j ≤ m. Then
conv(S) =

⋂m
i=1 conv(V \ S̄i).

Theorem 1, due to Angulo, Ahmed, Dey and Kaibel [2], shows that we can
consider each connected component of G(S̄) separately when studying conv(S).
In Section 4, we give similar theorems in the case where P ⊂ [0, 1]n and G(S̄)
contains a vertex cutset of cardinality 1 or 2. In this section, we provide the

descriptions for Q
(1)
S , Q

(2)
S , Q

(3)
S .

2.1 Chvátal rank 1

Theorem 2. The polytope P has Chvátal rank at most 1 when S̄ is a stable set
in G.

In particular, if S contains all the 0,1 vertices of Hn with an even (odd resp.)
number of 1s, then P has Chvátal rank at most 1. Theorem 2 is obtained by

characterizing Q
(1)
S . For each x̄ ∈ S̄, we call

n∑
j=1

(x̄j(1− xj) + (1− x̄j)xj) ≥ 1 (1)

the vertex inequality corresponding to x̄. For example, when x̄ = 0, the corre-
sponding vertex inequality is x1 + x2 + . . . + xn ≥ 1. Note that each vertex
inequality cuts off exactly the vertex x̄ and it goes through all the neighbors of
x̄ on Hn.

Theorem 3. Q
(1)
S is the intersection of [0, 1]n with the half-spaces defined by

the vertex inequalities (1) for x̄ ∈ S̄.



2.2 Chvátal rank 2

Theorem 4. For n ≥ 3, the Chvátal rank of QS is 2 if and only if G(S̄) contains
a connected component of cardinality at least 2, and each connected component
of G(S̄) is either a cycle of length greater than 4 or a path.

To prove this theorem, we provide an explicit characterization of Q
(2)
S .

Let N := {1, . . . , n}. Throughout the paper, we will use the following nota-
tion. For a 0,1 vector x̄, we denote by x̄i the 0,1 vector that differs from x̄ only
in coordinate i ∈ N , and more generally, for J ⊆ N , we denote by x̄J the 0,1
vector that differs from x̄ exactly in the coordinates J . We denote by ei the ith
unit vector for i ∈ N .

Let x̄, ȳ ∈ S̄ be two vertices of G(S̄) such that they differ in exactly one
coordinate, say ȳ = x̄i. The inequality∑

j∈N\{i}

(x̄j(1− xj) + (1− x̄j)xj) ≥ 1 (2)

is called the edge inequality corresponding to edge x̄ȳ. For example, when x̄ = 0
and ȳ = e1, the corresponding edge inequality is x2 + x3 + . . . + xn ≥ 1. The
inequality (2) is the strongest inequality that cuts off x̄ and ȳ but no other
vertex of Hn. Indeed, its boundary contains all 2(n− 1) neighbors of x̄ or ȳ on
Hn (other than x̄ and ȳ themselves). The next theorem states that vertex and
edge inequalities are sufficient to describe the second Chvátal closure of QS .

Theorem 5. Q
(2)
S is the intersection of Q

(1)
S with the half-spaces defined by the

edge inequalities (2) for x̄, ȳ ∈ S̄ such that x̄ȳ is an edge of Hn.

Note that the edge inequality (2) dominates the vertex inequalities for x̄ ∈ S̄
and for ȳ ∈ S̄. Thus vertex inequalities are only needed for the isolated vertices
of G(S̄).

2.3 Chvátal rank 3

Theorem 6 below is the main result of this section. It characterizes Q
(3)
S .

4-cycles of G(S̄) correspond to 2-dimensional faces of Hn that are squares.
Using our notation, if x̄, x̄i, x̄`, x̄i` ∈ S̄, we say that (x̄, x̄i, x̄`, x̄i`) is a square.
Note that ∑

j∈N\{i,`}

(x̄j(1− xj) + (1− x̄j)xj) ≥ 1 (3)

is the strongest inequality cutting off exactly the four points of the square
(x̄, x̄i, x̄`, x̄i`). Indeed, the 4(n − 2) neighbors of x̄, x̄i, x̄`, x̄i` in Hn (other than
x̄, x̄i, x̄`, x̄i` themselves) all satisfy (3) at equality. We call (3) a square inequality.
As an example, if (0, e1, e2, e1+e2) is a square contained in G(S̄), the correspond-
ing square inequality is x3 + x4 + . . .+ xn ≥ 1.



If x̄ and t ≥ 3 of its neighbors x̄i1 := x̄ + (1 − 2x̄i1)ei1 , . . . , x̄it := x̄ + (1 −
2x̄it)e

it all belong to S̄, then we say that (x̄, x̄i1 , . . . , x̄it) is a star. The following
star inequality is valid for conv(S)

t∑
r=1

(x̄it(1− xit) + (1− x̄it)xit) + 2
∑

j 6=i1,...,it

(x̄j(1− xj) + (1− x̄j)xj) ≥ 2. (4)

It cuts off the vertices of the star, and goes through the other n − t neighbors
of x̄ on Hn and the t(t− 1)/2 neighbors of two vertices among x̄i1 , . . . , x̄it . For
example, if (0, e1, . . . , et) is a star, then (4) is x1+. . .+xt+2(xt+1+. . .+xn) ≥ 2.

0 e2

e1 e1 + e2

0

e1

e2 e3

Fig. 1. Square and star with x̄ = 0

Theorem 6. Q
(3)
S is the intersection of Q

(2)
S with the half-spaces defined by the

square inequalities (3) and the star inequalities (4).

To illustrate our proof techniques, we will prove Theorem 6 in this extended
abstract. The proof uses the following lemma, which gives the linear description
of conv(S) when S̄ is a star.

Lemma 3. Let n ≥ 3. If S̄ is a star, then conv(S) is completely defined by the
corresponding star inequality together with the edge inequalities and the bounds
0 ≤ x ≤ 1.

Proof. We may assume that x̄ = 0, S̄ = {0, e1, . . . , et} and I := {1, . . . , t}.
If t = n, then S is the set of 0,1 vectors satisfying the system

∑n
j=1 xj ≥ 2

with 0 ≤ x ≤ 1. This constraint matrix is totally unimodular. Therefore it defines
an integral polytope, which must be conv(S).

If t = 2, we observe similarly that {x ∈ [0, 1]n :
∑

j∈N\{r}(x̄j(1 − xj) +

(1 − x̄j)xj) ≥ 1 for r = 1, 2} is an integral polytope. Indeed, the corresponding
constraint matrix is also totally unimodular.

If 3 ≤ t < n, it is sufficient to show that A := {x ∈ [0, 1]n :
∑

i∈I xi +
2
∑

j∈N\I xj ≥ 2,
∑

j∈N\{r} xj ≥ 1 for 1 ≤ r ≤ t} is an integral polytope. Let
v be an extreme point of A. We will show that v is an integral vector. Since



we assumed n ≥ 3, A has dimension n and there exist n linearly independent
inequalities active at v.

First, consider the case when the star inequality is active at v. If no edge
inequality is active at v, then n−1 inequalities among 0 ≤ x ≤ 1 are active at v.
Since

∑
i∈I vi + 2

∑
j∈N\I vj = 2, it follows that all coordinates of v are integral.

Thus we may assume that an edge inequality
∑

j∈N\{1} xj ≥ 1 is active at v.
Consider the face F of A defined by setting this edge inequality and the star
inequality as equalities. Clearly v is a vertex of F . Observe that the two equations
defining F can be written equivalently as

∑
j∈N\{1} xj = 1 and x1+

∑
j∈N\I xj =

1. Furthermore, any other edge inequality
∑

j∈N\{r} xj ≥ 1 is implied by x ≥
0 since it can be rewritten as

∑
j∈I\{1,r} xj ≥ 0 using x1 +

∑
j∈N\I xj = 1.

This means that F is entirely defined by 0 ≤ x ≤ 1 and the two equations
x1 +

∑
j∈N\I xj = 1 and

∑
j∈N\{1} xj = 1. This constraint matrix is totally

unimodular, showing that v is an integral vertex.
Assume now that the star inequality is not active at v, namely

∑
i∈I vi +

2
∑

j∈N\I vj > 2. If at most one edge inequality is tight at v, then v is obviously
integral. Thus, we may assume that k ≥ 2 edge inequalities are tight at v, say∑

j∈N\{r} xj ≥ 1 for 1 ≤ r ≤ k. Then v1 = . . . = vk. If v1 is fractional, v has at
least k fractional coordinates. We assumed that only k inequalities other than
0 ≤ x ≤ 1 are active at v, so the other coordinates are integral. Hence, vj = 0 for

j 6∈ {1, . . . , k} and v1 = . . . = vk = 1
k−1 . Then

∑t
r=1 vr+2

∑
j∈N\I vj = k

k−1 ≤ 2.

However, this contradicts the assumption that
∑

i∈I vi + 2
∑

j∈N\I vj > 2. �

Proof of Theorem 6:

Applying the Chvátal procedure to inequalities defining Q
(2)
S , it is straight-

forward to show the validity of the inequalities (3) and (4) for Q
(3)
S .

To complete the proof of the theorem, we need to show that all other valid

inequalities for Q
(3)
S are implied by those defining Q

(2)
S , (3) and (4).

Consider a valid inequality for Q
(3)
S and let T̄ denote the set of 0,1 vectors

cut off by this inequality. If T̄ = ∅, then the inequality is implied by 0 ≤ x ≤ 1.
Thus, we assume that T̄ 6= ∅. Let T := {0, 1}n \ T̄ . By the definition of a Chvátal

inequality, there exists an inequality ax ≥ b valid for Q
(2)
S that cuts off exactly

the vertices in T̄ . By Lemma 1, the center points of the cubes of Hn all belong

to Q
(2)
S . This means ax ≥ b does not cut off any of them. By Lemma 2, G(T̄ ) is

a connected graph. We claim that the distance between any 2 vertices in G(T̄ )
is at most 2. Indeed, otherwise G(T̄ ) contains two opposite vertices of a cube,
and therefore its center satisfies ax < b, a contradiction.

We consider 3 cases: |T̄ | ≤ 3, G(T̄ ) contains a square, and G(T̄ ) contains no
square.

If |T̄ | ≤ 3, then G(T̄ ) is either an isolated vertex, an edge, or a path of length
two. Then vertex and edge inequalities with the bounds 0 ≤ x ≤ 1 are sufficient
to describe conv(T ) by Theorem 4.

If G(T̄ ) contains a square (x̄, x̄i, x̄`, x̄i`), it cannot cut off any other vertex
of Hn (otherwise, by Lemma 2 there would be another vertex of T̄ adjacent to



the square, and thus in a cube, and cut off by the inequality, a contradiction).
Thus, T̄ = {x̄, x̄i, x̄`, x̄i`}. Since

conv(T ) = {x ∈ [0, 1]n :
∑

j∈N\{i,`}

(x̄j(1− xj) + (1− x̄j)xj) ≥ 1},

a Chvátal inequality derived from ax ≥ b will therefore be implied by the square
inequality that corresponds to (x̄, x̄i, x̄`, x̄i`) and the bounds 0 ≤ x ≤ 1.

Assume that G(T̄ ) contains no square and |T̄ | ≥ 4. Note that a cycle of Hn

that is not a square has length at least six. Since the distance between any two
vertices in G(T̄ ) is at most two, G(T̄ ) contains no cycle of Hn. Thus, G(T̄ ) is a
tree. In fact, G(T̄ ) is a star since the distance between any two of its vertices is
at most two. Thus T̄ = {x̄, x̄i1 , . . . , x̄it} for some t ≥ 3. By Lemma 3, conv(T )
is described by edge and star inequalities with the bounds 0 ≤ x ≤ 1. Any
Chvátal inequality that one can obtain from ax ≥ b is therefore implied by the
edge inequalities corresponding to the edges (x̄, x̄i1), . . . , (x̄, x̄it) and the star
inequality that corresponds to the star (x̄, x̄i1 , . . . , x̄it). �

Note that, if an edge x̄ȳ of G(S̄) belongs to a square of G(S̄), the correspond-

ing inequality is not needed in the description of Q
(3)
S since it is dominated by the

square inequality. On the other hand, if an edge belongs to a star (x̄, x̄i1 , . . . , x̄it)
of G(S̄) with t < n, there is no domination relationship between the correspond-
ing edge inequality and star inequality by Lemma 3.

3 Chvátal rank 4

In this section, we give the characterization of Q
(4)
S . It is somewhat more involved

than the results for Q
(1)
S , Q

(2)
S and Q

(3)
S , but it is in the same spirit.

Consider any cube with vertices in G(S̄). Specifically, for x̄ ∈ {0, 1}n, recall
that we use the notation x̄i to denote the 0,1 vertex that differs from x̄ only in co-
ordinate i, and more generally, for J ⊆ N , let x̄J denote the 0,1 vector that differs
from x̄ exactly in the coordinates J . If the 8 points x̄, x̄i, x̄k, x̄`, x̄ik, x̄i`, x̄k`, x̄ik`

all belong to S̄, then we say that these points form a cube. Note that∑
j∈N\{i,k,`}

(x̄j(1− xj) + (1− x̄j)xj) ≥ 1 (5)

is a valid inequality for conv(S) and that it cuts off exactly 8 vertices of Hn,
namely the 8 corners of the cube. In fact, it is the strongest such inequality since
it is satisfied at equality by all 8(n− 3) of their neighbors in Hn. We call (5) a
cube inequality.

If x̄, x̄i1 , x̄i2 , x̄i3 , x̄i1i2 , x̄i2i3 , x̄i3i1 , x̄i4 , . . . , x̄it all belong to S̄ for some t ≥ 4,
then we say that these points form a tulip. Let IT := {i1, . . . , it}. Note that
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Fig. 2. Cube, tulip, and propeller with x̄ = 0

3∑
k=1

(x̄ik(1− xik) + (1− x̄ik)xik) + 2

t∑
r=4

(x̄ir (1− xir ) + (1− x̄ir )xir )

+3
∑
j 6∈IT

(x̄j(1− xj) + (1− x̄j)xj) ≥ 3 (6)

is a valid inequality for conv(S) that cuts off exactly these points. We call it
a tulip inequality. For example, if x̄ = 0, and x̄ik = ek for k = 1, 2, 3, (6) is
x1 + x2 + x3 + 2(x4 + . . .+ xt) + 3(xt+1 + . . .+ xn) ≥ 3.

If x̄, x̄i1 , x̄i2 , . . . , x̄it , x̄it+1 , x̄i1it+1 , x̄i2it+1 , . . . , x̄itit+1 all belong to S̄ for some
t ≥ 3, then we say that these points form a propeller. Let IP := {i1, . . . , it+1}.
Note that

t∑
r=1

(x̄ir (1− xir ) + (1− x̄ir )xir ) + 2
∑
j 6∈IP

(x̄j(1− xj) + (1− x̄j)xj) ≥ 2 (7)

is a valid inequality that cuts off exactly the above points. We call it a propeller
inequality. For example, if x̄ = 0, x̄it+1 = e1 and x̄ik = ek+1 for k = 1, . . . , t, the
propeller inequality is x2 + . . .+ xt+1 + 2(xt+2 + . . .+ xn) ≥ 2.

Theorem 7. Q
(4)
S is the intersection of Q

(3)
S and the half spaces defined by all

cube, tulip, and propeller inequalities.

Corollary 1. Let P ⊆ [0, 1]n be a polytope, S = P ∩{0, 1}n and S̄ = {0, 1}n \S.
If G(S̄) contains no 4-cycle, then P has Chvátal rank at most 3.

The set of vertices T̄ cut off by a linear inequality induces a connected graph
by Lemma 2. One can show that if G(T̄ ) contains vertices at distance greater
than 2, then it contains a 4-cycle. Therefore, if G(T̄ ) contains no 4-cycle, it is a
star in the bipartite graph G(Hn) with one vertex on one side and at most n on
the other.



Remark 1. Let P ⊆ [0, 1]n be given by a system of k inequalities. IfG(S̄) contains
no 4-cycle, then |S̄| ≤ k(n+ 1). It follows that optimizing a linear function over
S can be solved in polynomial time in this case.

Corollary 2. Let n ≥ 3 and i = 0, 1 or 2. For S ⊇ {x ∈ {0, 1}n :
∑n

j=1 xj =
i (mod 3)}, the set conv(S) is entirely described by vertex, edge, star inequalities
and bounds 0 ≤ x ≤ 1.

We note that, for n ≥ 5, i = 0, 1, 2, 3 and S ⊇ {x ∈ {0, 1}n :
∑n

j=1 xj =
i (mod 4)}, conv(S) might contain an inequality with Chvátal rank 5 in its linear
description.

4 Vertex cutsets

Corollary 1 implies that if G(S̄) induces a forest, the Chvátal rank of P is at
most 3. This can also be proved directly using a vertex cutset decomposition
theorem in the spirit of Theorem 1. We present it below in Section 4.1.

Trees can be generalized using the notion of tree width. A connected graph
has tree width one if and only if it is a tree. Next, we focus our attention on
the case when G(S̄) has tree width two. Instead of working directly with the
definition of tree width, we will use the following characterization: A graph has
tree width at most two if and only if it contains no K4-minor; furthermore a
graph with no K4-minor and at least four vertices always has a vertex cut of
size two.

The main result of this section is that P has Chvátal rank at most 4 when
G(S̄) has tree width 2.

Theorem 8. Let P ⊆ [0, 1]n, S = P ∩ {0, 1}n and S̄ = {0, 1}n \ S. If G(S̄) has
tree width 2, the Chvátal rank of P is at most 4.

The proof follows from a 2-vertex cutset decomposition theorem, which we
state below in Section 4.2.

4.1 1-vertex cutset

The next theorem shows that conv(S) can be decomposed when G(S̄) contains
a vertex cut. This result is in the spirit of the theorem of Angulo, Ahmed, Dey
and Kaibel (Theorem 1) but it is specific to polytopes contained in the unit
hypercube.

Let G = (V,E) be a graph and let X ⊆ V . For v ∈ X, let NX [v] denote the
closed neighborhood of v in the graph G(X). That is NX [v] := {v} ∪ {u ∈ X :
uv ∈ E}.

Theorem 9. Let S ⊆ {0, 1}n and S̄ = {0, 1}n \ S. Let v be a cut vertex in
G(S̄) and let S̄1, . . . , S̄` denote the connected components of G(S̄ \ {v}). Then

conv(S) =
⋂`

i=1 conv({0, 1}n \ (NS̄ [v] ∪ S̄i)).
Furthermore, if v does not belong to any 4-cycle in G(S̄), then conv(S) =

conv({0, 1}n \NS̄ [v]) ∩
⋂`

i=1 conv({0, 1}n \ ({v} ∪ S̄i)).



Theorem 9 cannot be extended to general polytopes, as shown in the following
example.

v1 v2

v3

v4

v5v6

v7

v8

Fig. 3. An example in R2

Example 1. Let P be the polytope in R2 shown in Figure 3. Let V := {v1, . . . , v8}
denote its vertex set and let G = (V,E) be its skeleton graph. Let S :=
{v5, v6, v7} and S̄ := V \S. In the figure the set of white vertices is S, while the
set of black vertices is S̄. Note that v2 is a cut vertex of G(S̄), and NS̄ [v2] =
{v1, v2, v3}. Therefore, S̄1 := {v1, v8} and S̄2 := {v3, v4} induce two distinct
connected components of G(S̄ \ {v2}).

Note that conv(S) is a triangle, but the intersection of conv(V \{v1, v2, v3, v4})
and conv(V \ {v1, v2, v3, v8}) is a parallelogram. Therefore, we get that

conv(S) 6= conv(V \ (NS̄ [v2] ∪ S̄1)) ∩ conv(V \ (NS̄ [v2] ∪ S̄2)).

�

4.2 2-vertex cut

A key step in proving Theorem 8 is the next theorem.

Theorem 10. Let S ⊆ {0, 1}n and S̄ = {0, 1}n \ S. Let {v1, v2} be a vertex cut
of size two in G(S̄). Let S̄1, . . . , S̄k denote the connected components of G(S̄ \
{v1, v2}). Then conv(S) =

⋂k
i=1 conv({0, 1}n \ (NS̄ [v1] ∪NS̄ [v2] ∪ S̄i)).

It is natural to ask whether this theorem can be extended to vertex cuts of
larger sizes. The 3-vertex cut case is open, but it turns out that Theorem 10
cannot be generalized to 4-vertex cutsets as shown by the following example.

Example 2. Consider S̄ = (({0, 1}4 × {0}) \ {e1 + e2 + e3 + e4}) ∪ {e5}. Then
x1 + x2 + x3 + x4 + 3x5 ≥ 4 is a facet-defining inequality for conv(S). Note
that it cuts off all points in S̄. In addition, C̄ := {e1, e2, e3, e4} is a vertex cut



of cardinality four in S̄. Then S̄1 := {0, e5} and S̄2 := {e1 + e2 + e3, e1 + e2 +
e4, e1 +e3 +e4, e2 +e3 +e4, e1 +e2, e1 +e3, e1 +e4, e2 +e3, e2 +e4, e3 +e4} induce
two connected components of G(S̄ \ C̄). However,

conv(S) 6=
2⋂

i=1

conv({0, 1}5 \ (NS̄ [e1] ∪ . . . ∪NS̄ [e4] ∪ S̄i))

since x1 + x2 + x3 + x4 + 3x5 ≥ 4 is not valid for conv({0, 1}5 \ (NS̄ [e1] ∪ . . . ∪
NS̄ [e4] ∪ S̄i)) for i = 1, 2. �

4.3 Implication for the Chvátal rank

Theorems 9 and 10 imply bounds on the Chvátal rank of P when G(S̄) has a
vertex cutset of size one or two.

Corollary 3. Let P = ∩ti=1Pi, where Pi ⊆ [0, 1]n are polytopes. Let Vi = Pi ∩
{0, 1}n, S = P ∩ {0, 1}n and S̄ = {0, 1}n \ S.

(i) Let v be a cut vertex in G(S̄), let S̄1, . . . , S̄t induce the connected compo-
nents of G(S̄ \ {v}). Assume Vi = {0, 1}n \ (NS̄ [v] ∪ S̄i). Then the Chvátal rank
of P is no greater than the maximum Chvátal rank of Pi, i = 1, . . . , t.

(ii) Let {v1, v2} be a vertex cut of size two in G(S̄). Let S̄1, . . . , S̄t induce the
connected components of G(S̄\{v1, v2}). Assume Vi = {0, 1}n\(NS̄ [v1]∪NS̄ [v2]∪
S̄i). Then the Chvátal rank of P is no greater than the maximum Chvátal rank
of Pi, i = 1, . . . , t.

5 Dependency on the cardinality of the infeasible set

One can derive an upper bound on the Chvátal rank as a function of |S̄| using
the result of Eisenbrand and Schulz [8] showing that the Chvátal rank of a 0,1
polytope is at most n2(1 + log2 n).

Theorem 11. If |S̄| = k for some k ≤ n, then the Chvátal rank of P is at most
k2(1 + log2 k).

This theorem implies that if the number of infeasible 0,1 vectors is a constant,
then P is of constant Chvátal rank.

The next theorem shows that the Chvátal rank of P can be guaranteed to
be smaller than the upper bound of O(n2 log n) when the cardinality of S̄ is
bounded above by a subexponential but superpolynomial function of n. The
proof uses a result of Eisenbrand and Schulz [8] stating that, if cx ≥ c0 is a
valid inequality for conv(S), where the cjs are relatively prime integers, then the
Chvátal rank of P is at most n2 + 2n log2 ‖c‖∞.

Theorem 12. If |S̄| < nfk(n) where fk(n) ≤ (log2 n)k for some positive con-
stant k, then the Chvátal rank of P is O(n2 log log n).



6 Optimization problem under small Chvátal rank

Let P ⊆ [0, 1]n and S = P ∩ {0, 1}n. Even when the Chvátal rank of P is just
1, it is still an open question whether optimizing a linear function over S is
polynomially solvable or not [6]. In this section, we prove a weaker result.

Theorem 13. Let P ⊆ [0, 1]n and S = P ∩ {0, 1}n. If the Chvátal rank of QS

is constant, then there is a polynomial algorithm to optimize a linear function
over S.

Proof. The optimization problem is of the form min{cx : x ∈ S} where c ∈ Rn.
By complementing variables, we may assume c ≥ 0. By hypothesis, conv(S) =

Q
(k)
S for some constant k. We claim that an optimal solution can be found among

the 0,1 vectors with at most k + 1 nonzero components. This will prove the
theorem since there are only polynomially many such vectors. Indeed, if an
optimal solution x̄ has more than k+1 nonzero components, any 0,1 vector z̄ ≤ x̄
with exactly k+1 nonzero components satisfies cz̄ ≤ cx̄. Because conv(S) = Q

(k)
S

Lemma 1 implies that the face of Hn of dimension k + 1 that contains 0 and z̄
contains a feasible point ȳ ∈ S. Since cȳ ≤ cz̄ ≤ cx̄, the solution ȳ is an optimal
solution. �
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